открытое покрытие

мат. open cover

Большой англо-русский и русско-английский словарь. 2001.

Смотреть что такое "открытое покрытие" в других словарях:

  • Открытое покрытие — Покрытие в математике  это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии. Содержание 1 Определения 2 Связанные определения 3 Свойства …   Википедия

  • Покрытие — У этого термина существуют и другие значения, см. Покрытие (значения). Покрытие в математике  это семейство множеств, таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии …   Википедия

  • Покрытие (математика) — У этого термина существуют и другие значения, см. Покрытие (значения). Покрытие в математике  это семейство множеств, таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии …   Википедия

  • Покрытие (в геометрии) — Покрытие в математике  это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии. Содержание 1 Определения 2 Связанные определения 3 Свойства …   Википедия

  • Открытое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • ПОКРЫТИЕ — множества X любое семейство подмножеств этого множества, объединение к рого есть X. 1) Под П. топологического пространства, равномерного пространства и вообще какого либо множества, наделенного тем или иным строением, понимают произвольное П.… …   Математическая энциклопедия

  • Локально конечное покрытие — Покрытие в математике  это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии. Содержание 1 Определения 2 Связанные определения 3 Свойства …   Википедия

  • ЛОКАЛЬНО КОНЕЧНОЕ ПОКРЫТИЕ — покрытиетопологич. пространства его подмножествами такое, что у каждой точки есть окрестность, пересекающаяся лишь с конечным числом элементов этого покрытия. Не из всякого открытого покрытия прямой можно выделить Л. к. п.: достаточно рассмотреть …   Математическая энциклопедия

  • ПАРАКОМПАКТНОСТИ КРИТЕРИИ — следующие утверждения, равносильные для произвольного вполне регулярного хаусдорфова пространства X.1) Xпаракомпактно. 2) В каждое открытое покрытие пространства Xможно вписать локально конечное открытое покрытие. 3) В каждое открытое покрытие… …   Математическая энциклопедия

  • ПАРАКОМПАКТНОЕ ПРОСТРАНСТВО — топологическое пространство, в любое открытое покрытие к рого можно вписать локально конечное открытое покрытие. (Семейство g множеств, лежащих в топологич. пространстве X, наз. локально конечным в X, если у каждой точки существует окрестность в… …   Математическая энциклопедия

  • Топология — (от греч. tоpos место и …логия (См. ...Логия)         часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных… …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.